
 
 

Initial word learning in children:  

A simple neural net model that does not require language-specific innate constraints 

 
 
 

 
 
 
 
 
 

 
 

P. Thomas Schoenemann 
 

 
Department of Anthropology 

Indiana University  
 
 

E-mail: toms@indiana.edu 
 

 
 
 
Running headline: Neural Net Model of Word Learning 
 
 
Acknowledgements:  

 

This work was originally presented at the 1st Workshop on Language Acquisition and 

Change, City University of Hong Kong, May 2001. This paper has benefited from 

discussions with Craig Martell, William S.-Y. Wang, Vincent Sarich, and Reina Wong.  

Any errors that remain are of course my own. 



Neural Net Model of Word Learning 

2 

Abstract: 
 
Children rapidly learn the meanings of words even though the utterances they hear 

typically contain many words with different referents, and the intended referents of 

particular words is often unclear (Quine’s problem of referential indeterminacy).  It has 

been proposed that they possess innate, language-specific mechanisms that constrain their 

interpretations of utterances in particular ways. An alternative model instead argues that 

children perform loose mappings between both the words they hear and the possible 

interpretations for these words, thereby building up increasingly strong associations 

between salient dimensions of the child’s conceptual awareness and utterances that they 

hear.  Siskind {, 1996 #1604} demonstrated this could be modeled computationally.  It is 

further shown that a simple artificial neural net can also model this process: words can 

come to be associated strongly with specific concepts even though the net is never 

explicitly trained to associate single words with pre-specified meanings.   
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Introduction: 
 
The complexity of natural language, combined with the apparent ease with which 

children learn it, have lead many to argue for the existence of innate, language-specific 

cognitive mechanisms (Chomsky, 1972, 1980; Bickerton, 1990; Pinker, 1994, among 

others).  One riddle involves the question of how children learn the meanings of words.  

Given that the specific pattern of sounds (or hand gestures) that is used to symbolize a 

particular concept will vary from language to language, some sort of learning must be 

involved.  However, as Quine (Quine, 1960) pointed out, there are an indefinite number 

of possible referents to any given signal a child might hear.  If someone points to a dog 

and says, “Look at the dog!”, how do children know the word “dog” refers to the dog, 

and not the grass it is standing on, or only the dog’s nose, or even the tip of the finger of 

the person pointing?  How do children learn to associate a particular pattern of sounds or 

hand gestures with a specific concept (or set of concepts) in the face of this referential 

indeterminacy?   

 

One possibility is that there are innate word learning biases or constraints that guide the 

child to make the correct association.  A number of such learning constraints have been 

proposed based on empirical studies (see P. Bloom, 1996 for a review).  For example, 

Markman (1987; 1990) has argued that children assume that words refer to the whole 

object, not some part of the object (e.g., “dog” refers to the whole animal, not just its 

nose, or some other part of its body).  Markman (1990) has also shown that children tend 

to assume that words refer to items of the same kind (animals, tools, structures, etc.), not 

to items that are thematically related (e.g., items relevant to making a meal: foods, pots 
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and pans, household appliances, etc.),  in spite of the fact that in sorting tasks they tend to 

naturally associate things that are thematically related.  Markman and Wachtel (1988) 

argue that children are biased to assume that the meanings of words are mutually 

exclusive. Clark (1987) argues instead for a weaker bias: children tend to assume words 

contrast in meaning in some way, but word meanings can overlap.  The general idea of 

language-specific constraints on word learning is supported by a number of current 

researchers (e.g., Waxman & Booth, 2000; Woodward, 2000; 2001). 

 

However, there are a number of difficulties with this approach.  First, the constraints 

proposed so far explain only limited classes of words (usually count nouns), so that other 

theories must be posited to explain, e.g., the acquisition of verb meanings (P. Bloom, 

1996, 2000; Tomasello & Akhtar, 2000).  In fact, it has been argued that some of these 

strategies would actually hinder the acquisition of non-object noun meanings (Tomasello 

& Akhtar, 2000).  In addition, it is not clear that these biases help explain how children 

initially begin learning word meanings, since they do not appear to operate from the 

beginning of word learning (P. Bloom, 2000; Smith, 2000).  While it is still possible that 

they are innate biases that just happen to operate later, this pattern is also consistent with 

some form of learned strategy concerning the likely references for new words.  In any 

case, Quine’s problem is unresolved even with these strategies.   

 

Furthermore, general evolutionary principles suggest that special, language-specific 

innate structures are inherently unlikely (Schoenemann & Wang, 1996; Schoenemann, 

1999).  It has long been recognized that adaptive evolutionary change most often occur 
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through the modification of existing features, rather than the evolution of completely new 

mechanisms (Jacob, 1977; Schoenemann, 1999).  In addition, since behavioral flexibility 

allows an organism to make adaptive changes during an individual’s lifetime, without 

having to wait for genetic modifications (which generally take many generations to 

accomplish), it is also generally recognized that behavioral change drives genetic change, 

and not the other way around (Mayr, 1978).  Languages must necessarily adapt in each 

and every generation to the cognitive abilities already present in the population (M.H. 

Christiansen, 1994).  The idea that language rests on the evolutionary modification of 

prior cognitive functions is consistent with a broad range of research, including the fact 

that the left hemisphere appears to be biased towards processing of temporal information 

of all kinds, not just linguistic information (Tzeng & Wang, 1984), as well as the 

discovery of ‘mirror’ neurons that respond both to actions perceived in others as well as 

the same actions performed by self (Rizzolatti & Arbib, 1998; Arbib, 2001).  This general 

view is held by a number of models of language evolution (e.g., Wang, 1991; Deacon, 

1997; Schoenemann, in press).   

 

With respect to word learning, therefore, an evolutionary perspective would lead us to 

expect a priori that pre-existing general-purpose mechanisms are the most likely 

explanation.  It is of course possible that special language-specific mechanisms evolved, 

but Occam’s razor requires us to thoroughly investigate explanations that do not posit 

special structures. 
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In fact, alternative models have been proposed for word learning in children that deny the 

necessity of language-specific innate constraints.  A number of researchers have pointed 

out that the process of word learning is fundamentally a social process, involving the 

interaction of a language incompetent child with a series of language competent 

individuals (Nelson, 1988; 1991; Ahktar & Tomasello, 2000).  Steels and Kaplan (2000) 

have shown that modeling a social language game between visually grounded robotic 

agents can lead to the development of a shared lexicon.  Ahktar and Tomasello (2000) 

and Bloom (2000) specifically tie word learning to children’s understanding of other’s 

intentions, and review evidence that this plays a key role in helping children map the 

correct concepts to particular words.  Smith (2000) reviews research suggesting that 

various word acquisition constraints are the result of a general associative developmental 

process, rather than a priori language-specific innate constraints.  The idea that 

associative processes might explain how to get around Quine’s problem of referential 

indeterminacy has been suggested by several authors (Pinker, 1989; Savage-Rumbaugh 

& Rumbaugh, 1993; Fisher, Hall, Rakowitz, & Gleitman, 1994; Siskind, 1996).  The 

proposal is that children may be performing loose mappings between words they hear and 

possible interpretations for these words.  If there is something consistent across all 

observed uses of a given word, then general associative mechanisms might be expected to 

gradually strengthen word-meaning pairings.  What is consistent across uses might be 

sets of basic perceptual features (e.g., ‘round shape’, ‘red color’), types of actions (e.g., 

‘run’, ‘hit’), emotional states of others (e.g., ‘happy’, ‘angry’), and so forth.  Basically, 

anything the child can conceive of at the time the word(s) are spoken would be potential 

referents for these words.  There are likely to be innate mechanisms that bias children to 
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package certain sets of perceptual features in certain ways, such that it is easier for them 

to form specific concepts.  However, these mechanisms would not need to be specific to 

language (even though language itself allows for the creation of new concepts).  From an 

evolutionary perspective, we must assume that a reasonably complex conceptual world 

existed prior to the development of language (Schoenemann, 1999).  Thus, there must be 

some conceptual awareness and thought independent of language, and this is what 

language learning critically depends upon. Also note that this model is not inconsistent 

with the idea that social context and understanding of intentions are crucial to word 

learning.  These can be conceived of as biases that help focus the child’s attention on 

certain aspects of their perceptual input, and allow them to further limit the possible 

interpretations a child might make regarding a given set of words.  

 

The benefit of the argument that word meanings emerge as a consequence of their 

repeated associations with particular concepts is that – in contrast to the constraint 

theories mentioned above - it explains the acquisition of any type of word (not just 

particular types of nouns) as long as the child already has the requisite concept(s).  It is 

important to remember that even constraint theories implicitly accept that the child must 

already have concepts for words (P. Bloom, 2000).The pattern-matching hypothesis is 

both simpler and potentially more powerful, and requires a minimum of pre-existing 

language-specific cognitive structures.  No particular assumptions need to be made about 

the extension of meanings to given words.  If adults use words for which the meanings 

overlap in some odd but consistent way, children will learn these odd meanings simply by 

paying attention to the patterns of co-occurring associations.  Thus constraints like 
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Clark’s (1987)“principle of contrast” could be explained simply as a learned recognition 

that words tend to have meanings that differ in some way from others, without having to 

posit this constraint as existing innately from the outset of word learning.  Furthermore, it 

explains how children could learn words at the very earliest stages of language 

acquisition, prior to any understanding of syntax that can provide cues to word meaning 

(Gleitman, 1990).  It should be stressed that the argument is not that children do not use 

information provided by syntax or from various constraints or biases of word meaning, 

but rather that these are learned strategies, not innate constraints. 

 

In addition, this model would explain how apes are able to learn to associate arbitrary 

symbols with concepts (Savage-Rumbaugh & Rumbaugh, 1993).  Thus we potentially 

have a way of explaining the apparent evolutionary continuity of cognitive ability with a 

common mechanism: exactly what an evolutionary perspective predicts.  

 

Not only does this model solve the referential indeterminancy  problem without 

language-specific innate constraints, but Siskind (1996) has shown that the pattern-

matching hypothesis can be modeled computationally.  Siskind’s model handles certain 

kinds of noise as well as homonymy (assuming the variant word meanings are completely 

distinct) by allowing multiple interpretations to coexist (e.g., the model allows for a 

“band1” and “band2” to have different meanings).  It also impressively demonstrates 

increasingly fast word learning as more and more words are learned (eventually learning 

words after only one or two exposures) just like human children.  It cannot, however, deal 

with polysemy, nor the presence of idioms or metaphors, nor with the problem of 
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fragmentary utterances.  It also assumes children can segment speech into words.  

However, his model is fundamentally designed to show proof-of-concept of the idea of 

cross-situational inference for solving word-meaning mapping problems.  It postulates a 

number of formal inference rules about what to do with certain kinds of word-meaning 

associations, as well as a set of tables mapping word symbols to necessary and possible 

conceptual symbols.  Siskind himself specifically states that he does not claim children 

actually employ the particular algorithm presented in his paper (p. 40).   

 

The goal of the present paper is to show that some key aspects of this idea - that word 

meanings emerge as a consequence of their repeated associations with particular concepts 

-can be modeled using simple artificial neural nets.   Specifically, neural nets can learn to 

associate a specific word with a specific concept even though they are never explicitly 

trained to associate any single word with a single concept.   Because neural nets are 

specifically modeled on general principles of how the brain actually works at the 

neuronal level, showing that neural nets can learn this way provides additional support 

for the argument that word meanings can be learned without innate language-specific 

mechanisms.  Furthermore, the model presented here deals with certain problems that are 

not handled by Siskind’s (1996) model: polysemy, idioms and metaphors, and 

fragmentary utterances. 

 

Neural nets: 

Neural nets are composed of simple processing units (analogous to neurons), which are 

massively interconnected with other units in a simple hierarchical organization.  Thus, 
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neural nets are simulations of networks of neurons.  Just as in real brains, neural nets 

have specialized input and output structures.  Incoming information from the input nodes 

is manipulated in various ways as it is passed through the network, ultimately causing 

certain patterns of activation in the output structures (output nodes).  Figure 1 shows a 

simple neural net architecture.  The actual net used for the simulation discussed in this 

paper has more nodes – see below – but for visual simplicity a smaller network is 

depicted here.  A neural network is trained by adjusting the internal connections between 

nodes such that given input patterns will produce specific output patterns.  This training is 

accomplished, typically, by presenting the net with a series of correct input and output 

pairs.  For each pair of associations, the net’s internal connections are adjusted slightly to 

favor a specific output given a specific input.  Neural nets have been shown to be able to 

learn some quite impressive tasks (see Churchland & Sejnowski, 1994 for several 

examples).  In particular, they have been increasingly used to model aspects of language 

learning for which it had long been assumed language-specific innate constraints were 

necessary, such as in learning the rules regarding verb use from naturalistic input 

(Seidenberg, 1997), and learning to segment speech into words on the basis of subtle, 

noisy probabilistic cues inherent in the input (Morten H. Christiansen, Allen, & 

Seidenberg, 1998).   

 

[figure 1 about here] 

 

However, a simple neural net model is clearly not appropriate to the problem of word 

learning because the net typically knows unambiguously that a given input (i.e., a word) 
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should produce a given specific output (a concept).  This would beg the question we are 

trying to answer: how does the net (or child) learn the meanings of words without ever 

being able to know exactly the intended meaning of any utterance?  The modification in 

the present simulation is to train the net using inherently ambiguous learning sets.  The 

net will be trained to associate a group of words at a time with larger sets of possible 

concepts in each learning trial.  The set of possible concepts will always include the 

intended concepts (correct given the input words), but will also include a number of 

distractor words which are meant to represent other conceivably correct concepts 

(conceivably correct given the context in which the words may have been heard).  At the 

end of the training process, the net is tested to see how strongly single words are 

associated with specific meanings, even after never having been trained on specific 

associations.  This model is broadly similar to that proposed by McClelland and 

Rumelhart (1986) with the biggest difference being that ambiguous learning sets are used.  

McClelland and Rumelhart (1986) showed that a simple net (without a hidden layer) 

could map words to meanings such that specific words activated specific meanings, and 

vice versa.  In other words, setting the meaning to a particular value would activate the 

word for this meaning.  It could also activate the correct meaning from only a partial 

activation of the word as input.  However, it was trained to associate exactly one meaning 

with exactly one word, which does not solve the referential indeterminacy problem.  The 

question is whether neural nets are robust in the face of ambiguous learning sets.  

 

The model used here is deliberately very simple, designed simply to show proof-of-

concept.  Possible elaborations to make it more realistic will be discussed below.  The 
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specific network used consisted of three layers, as in Figure 1.  The input layer has 20 

nodes, each of which stand for a different specific word that the net “hears”.  The output 

layer also consists of 20 nodes, each of which stand for different specific concepts.  The 

net has a hidden layer of 40 nodes, which are connected to each of the input and output 

nodes.  For example, node 4 in the input layer might stand for the word “man”.  A key 

assumption in this simulation is that words can in some way be segmented from the 

speech stream (this is clearly a simplification, but we will argue below that this model 

might be elaborated to show how segmentation of words and learning of word meanings 

might both be accomplished by the same associative mechanism).  Exactly how words 

might be represented in real brains is not dealt with here, except to say that if real brains 

can distinguish words, they must represent them differently in some way.  Presumably 

different words are represented as different networks of activation among neurons in real 

brains, but our short-cut will be to assume that these different network activation states 

can be signified by single nodes.  Note that it would be possible to have complex network 

activations (simulating different words) be the inputs for our neural net model, but that 

would not materially change the basic point demonstrated here.  When a particular word 

is presented to the net, the input node corresponding to that word is set to 1.  Otherwise, 

the node is set to 0.   

 

Similarly, the output nodes represent single concepts.  The assumption here is that the net 

already “knows” certain concepts, and the problem is simply one of mapping possible 

words to possible concepts. Furthermore, we are assuming for the moment that the net 

has at least one concept for each word.  Node 17 of the net might represent the concept 
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[man], for example.  Just as in the case of inputs, we will not worry about exactly how 

concepts are represented in real brains (though presumably they are also distinct networks 

of activation ).  Whether a concept is signified by a single node or a network of activation 

is not crucial for the present argument.  The values for both the hidden and output nodes 

can be set to any value between 0 and 1.  A value of 1 for an output node means that that 

particular concept is maximally activated by the inputs.  There is nothing constraining 

more than one output node from being maximally activated at the same time. 

 

The network is trained to associate sets of inputs (representing words) with sets of 

outputs (representing concepts).  For the present simulation, the net is trained to weakly 

associate three words, chosen at random, with six possible concepts in each round.  The 

three correct concepts are always included among the concepts the net is trained on, but 

the other three concepts are randomly chosen (with respect to the correct concepts).  This 

is meant to model the idea that children have some conceptual awareness of an array of 

possible meanings for the words they hear, but that they do not know exactly what any 

given word means.  The other randomly chosen associations are meant to model other 

possible features of the child’s conceptual awareness that are present at the time the 

words are spoken. They need not be thought of as concrete objects specifically present in 

front of the child, but rather anything that the child could potentially conceive of at that 

moment (e.g., ‘fast’, ‘sleeping’, ‘anger’).  An example training set might have, for 

example:  

“man” “woman” “kiss”  

as inputs, and:  
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[ball] [woman] [run] [kiss] [man] [push] 

as outputs.  The weights of the net are then adjusted slightly to favor each of these 

outputs equally, when presented with these inputs.   

 

The net is trained using the standard back-propagation algorithm (Rumelhart, Hinton, & 

Williams, 1986).  Tlearn neural net software package was used to run these simulations 

(available free on the internet: http://crl.ucsd.edu/innate/tlearn.html;  Plunkett & Elman, 

1997).  The rate of learning was set at 2.  For simplicity, weights (describing how 

activation in one node affects activation in a connected node) are randomly set at the 

start.  This means the net starts with a random association between inputs (words) and 

outputs (meanings). 

 

The net is tested after every 50 rounds by being presented, one at a time, each word as 

input.  This means that the input node corresponding to a particular word is set to 1, 

activation is fed forward through the net, and the activation of each output node is logged.  

The goal will be to see if, after having been trained to associate sets of words with larger 

sets of possible concepts (only half of which will actually be correct  in any given trial), 

the net activates the correct single concept for a given single word as input (for example, 

does the output node corresponding to [kiss] show the greatest activation when only the 

input node corresponding to the word“kiss” is activated?).  Thus the goal is to see if the 

net can learn individual associations in the face of ambiguous input, without ever having 

been trained explicitly on any given association. 
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Results: 

Figure 2 shows a summary of the activation levels of the output nodes as a function of the 

number of training sets presented to the net.  The output nodes are divided into target 

meaning vs. non-target meaning nodes.  A target meaning node is the node that represents 

the appropriate concept for a given input word.  The non-target meaning nodes are all 

other nodes for that word.  At the beginning, there is no distinction between target and 

non-target meaning node activation  levels.  This means that when a particular word is 

input into the net, no particular concept node is activated more than others.  After training 

on 50 sets of word-concept pairings, the target meaning output nodes show on average 

slightly greater activation than the other non-target meanings.  However, there is quite a 

large degree of variability across words, with some showing very little activation at all.  

However, by the time the net has been trained on only 150 word-meaning sets, there is a 

clear separation between target and non-target activation levels.  The net reaches 

essentially perfect activation after training on ~1000 word-meaning sets.  That is, upon 

activating a particular word in input, the appropriate concept node is highly activated, and 

all other concept nodes are hovering around 0.1. 

 

[figure 2 about here] 

 

Discussion: 

The net learned to associate single words with single concepts, yet it rapidly did so 

without ever having been explicitly trained to associate single words with single 

concepts.  This is perhaps not surprising.  Connections between  particular word-concept 
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pairs are continually strengthened, while associations between a word and other concepts 

are not.  Nevertheless, this demonstrates that the problem of referential indeterminacy can 

easily be overcome if there is something consistent about the conceptual state of the child 

during repeated exposures to a given word, even if there are other words and concepts are 

present at the same time.   

 

The particular model presented above does make a number of assumptions.   As pointed 

out, it assumes that children already have concepts for which words can map onto.  

Again, however, this is also implicitly assumed by constraint models, and is what we 

should expect from an evolutionary perspective in any case (Schoenemann, 1999).   

 

In addition, the model assumes that inappropriate meanings that happen to be 

conceptualized by the child at the time the word is presented are random, over successive 

trials, with respect to the intended meaning.  This is clearly not strictly the case.  A given 

child might conceivably happen to be exposed to a word (e.g., “car”) when looking out of 

a window, but not in other instances.  This child, under the present model, would initially 

tend to assume the word “car” means something more like ‘wheeled moving object 

visible outside my bedroom window’.  However, eventually this association will 

necessarily be refined, because it is only a matter of time before the child also hears the 

word in other circumstances.  Thus, this model explains why children often do use words 

in peculiar ways, both more restrictive ways (e.g., the car example above;  L. Bloom, 

1973) and more general ways.  For example Bowerman (1978) reported that her daughter 

used the word “moon” to refer to many other objects of similar shape (e.g., a dishwasher 
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dial).  This apparently anomalous, individualistic understanding of word meanings early 

in word acquisition has been widely reported (reviewed  in Nelson, 1988).  Thus, though 

in this model potentially distracting associations are specifically randomized, thus leading 

to relatively quick mappings of words to meanings, quirky non-random associations 

would merely lead to exactly the kind of idiosyncratic understanding and use of words 

that appears to be seen in children (with real neural nets). 

 

Another assumption this model makes is that the child can segment the speech chain into 

words.  This assumption is of course shared by constraint theories.  It is possible that the 

present model could be extended to explain how word segmentation might be 

accomplished at the same time that word-meaning mapping is being done.  This might be 

done by training the net on associations between sequences of phonemes and concepts.  

In a classic paper on nets that learn sequences of inputs (as opposed to fixed sets of inputs 

as in the current model), Elman (1990) showed that a particular kind of recurrent network 

architecture could allow a net to learn word boundaries simply by being trained to predict 

the next letter in a stream of letters constituting a sentence.  If such a recurrent net were 

trained to predict word meanings based on sequences of phonemes, it seems likely that it 

would at first have no clear association of particular sets of phonemes with particular 

meanings.  However, over time the net would probably pass through a period in which 

supersets of phonemes would be associated loosely with sets of meanings.  For example, 

the sound sequences indicated by the words ‘soft’ and ‘fur’ might not associate 

individually with their respective concepts, but if both are activated consecutively , they 
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might activate both concepts equally.  This remains to be tested, but holds promise for 

explaining how words are segmented from streams of phonemes. 

 

One benefit of this extension of the model is that it has the potential for explaining how 

idioms, metaphors, and fragmentary utterances can be learned (which is a limitation of 

Siskind’s 1996 model).  Children initially tend to treat formulaic expressions like idioms 

as single lexical items (MacWhinney, 1978; Elman, 1990).  A temporal extension of the 

model discussed here would potentially have the ability to associate strings of variable 

length (Elman, 1990).  Thus idioms, metaphors and fragmentary utterances would simply 

be treated as long words.  Assuming the child can have a conceptual understanding of 

what the idiom is meant to refer to, they should be learned in exactly the same manner as 

described here for words. 

 

The contention here is not that children lack innate predispositions, but rather that we do 

not need to postulate language-specific innate mechanisms to explain word learning.  Nor 

is it claimed that children never use syntactical information, or that they don’t ever use 

constraints as rules of thumb for guessing the meanings of words.  The argument is that 

that these are simply helpful “cranes” (Smith, 2000) that develop later as a result of 

earlier word learning.  The model presented here shows how word learning can get 

started prior to any of these strategies.  It is also not disputed that a child’s understanding 

of other’s intentions plays a crucial role in word learning.  It is simply noted that some 

non-trivial level of referential indeterminacy still exists even if the child can eliminate a 

number of possible referents by being able to make educated guesses about what  
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speakers are thinking.  The associative model implemented here solves Quine’s problem, 

and at the same time would work in conjunction with a child’s understanding of 

intentionality.   

 

The work of Steels and colleagues (Steels & Kaplan, 2000) represents an alternative 

explanation.  Their model involves robot agents who learn words through an interactive 

game in which meanings and words are both created at the same time.  Agents gradually 

converge on meanings for words as they adjust their understanding of each other’s 

utterances on the basis of feedback.  While it is clear that human children do get some 

feedback (even if not explicit “negative evidence”) through various forms of implicit 

cueing when miscommunication occurs, it is not clear how many words are learned via an 

interactive game akin to that played by the robots.  In any case, the model suggested here 

would work independent of – and in addition to – other methods of word learning. 

 

It is possible to model word learning as a process of emerging word-meaning associations 

accomplished by accumulating loose mappings between perceived words and possible 

conceptual interpretations.  The fact that a simple artificial neural net model can do this 

suggests that real neural nets have at least this capability (though the subtlety and 

complexity of the associations are likely to be many orders of magnitude greater).  Such 

an explanation makes the riddle of language evolution that much more comprehensible, 

because it relies on pre-existing associative and conceptual abilities rather than de novo, 

innate, language-specific cognitive mechanisms. 
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Figure 1: Example architecture of a simple feed-forward net with 5 input nodes, 7 

hidden nodes, and 3 output nodes.  Each node is connected with (and therefore 

helps set the value of) every node in the subsequent layer. 
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Figure 2: Average output activation levels for target vs. non-target meanings after 

activation of a single word on input as a function of the number of sentences 

presented.  Error bars represent the standard deviation for the 20 input words. 
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